Arbeitsblatt Nr.

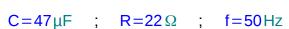
Datum:

Name:

Klasse:

Fach:

(Zeitaufwand: 20 Min.)


Aufgabe 1

Gegeben ist die rechts abgebildete

Parallelschaltung aus einem Kondensator und einem Widerstand.

$$\mathbf{v}_{\mathsf{AC}}(\mathbf{t}) = \hat{\mathbf{v}} \cdot \sin(\omega \cdot \mathbf{t})$$

$$\hat{v} = 6 V$$

Der Blindwiderstand des Kondensators kann durch folgende Formel errechnet werden:

$$X_{c} = \frac{1}{\omega \cdot C}$$

- a) Geben Sie die Formeln für den zeitlichen Verlauf von $i_R(t)$ und $i_C(t)$ basierend auf den oben angegebenen Bauteil-Werten an.
- b) Zeichnen Sie $i_R(t)$ und $i_C(t)$ in ein geeignetes Diagramm.
- c) Zeichnen Sie ein maßstäbliches Zeigerdiagramm für die Ströme bezogen auf die Spannung. (Der Spannungspfeil verläuft horizontal!)
- d) Bestimmen Sie aus dem Zeigerdiagramm die Amplitude von $i_{ges}(t)$ und die Phasenverschiebung von $i_{ges}(t)$ bezogen auf die Eingangsspannung $v_{AC}(t)$.

